Maths for Computing Tutorial 2

1. Let S(x) be the predicate "*x* is a student," F(x) the predicate "*x* is a faculty member," and A(x, y) the predicate "*x* has asked *y* a question," where the domain consists of all people associated with your school. Use quantifiers to express each of these statements.

- a) Every student has asked Professor Gross a question.
- b) Every faculty member has either asked Professor Miller a question or been asked a question by Professor Miller.
- c) Some student has not asked any faculty member a question.
- d) There is a faculty member who has never been asked a question by a student. **Solution:**
 - a) $\forall x(S(x) \rightarrow A(x, \text{Prof. Gross}))$. ($\forall x(S(x) \land A(x, \text{Prof. Gross}))$ is incorrect)
 - b) $\forall x(F(x) \rightarrow (A(x, \text{Prof. Miller}) \lor A(\text{Prof. Miller}, x))).$
 - c) $\exists x(S(x) \land \forall y(F(y) \rightarrow \neg A(x, y)))$. $(\exists x(S(x) \rightarrow \forall y(F(y) \rightarrow \neg A(x, y)))$ is incorrect) d) $\exists x(F(x) \land \forall y(S(y) \rightarrow \neg A(y, x)))$.
- 2. Find a common domain for the variables *x*, *y*, and *z* for which the statement

 $\forall x \forall y ((x \neq y) \rightarrow \forall z ((z = x) \lor (z = y)))$ is true and another domain for which it is false. **Solution:**

Domains for which the statement is true: $\{1\}, \{2,3\}$, or any set of one or two elements. Domains for which the statement is false: $\{1,2,3\}$, or any set of three or more elements.

3. Show that the following pairs are not logically equivalent

a)
$$\exists x P(x) \rightarrow \exists x Q(x) \text{ and } \exists x Q(x) \rightarrow \exists x P(x)$$

b) $\forall x P(x) \lor \forall x Q(x)$ and $\forall x (P(x) \lor Q(x))$

Solution:

- a) Take domain as {1} and P(x) = x = 1 and Q(x) = x = 2. Now $\exists x P(x) \rightarrow \exists x Q(x)$ is false, but $\exists x Q(x) \rightarrow \exists x P(x)$ is true.
- b) Take domain as set of integers and P(x) = x is even and Q(x) = x is odd. Now $\forall x P(x) \lor \forall x Q(x)$ is false, but $\forall x (P(x) \lor Q(x))$ is true.
- 4. Show that the following arguments are valid. (Write all the steps with reasons.)
 - a) Premises: $p \to (\neg r \to \neg q), \neg r$. Conclusion: $\neg (p \land q)$
 - b) Premises: $p \to q$, $(q \lor r) \land (\neg (q \land r))$. Conclusion: $\neg q \to (\neg p \land r)$.
 - c) Premises: $p \land \neg s, q \to (r \to s)$. Conclusion: $(p \to q) \to \neg r$.
 - d) Premises: $\forall x (P(x) \lor Q(x)), \forall x (\neg Q(x) \lor S(x)), \forall x (R(x) \to \neg S(x)), \text{ and } \exists x \neg P(x)$

Conclusion: $\exists x \neg R(x)$. (Domain for all quantifiers are the same.)

e) Premises: $\forall x (P(x) \lor Q(x)), \forall x ((\neg P(x) \land Q(x)) \rightarrow R(x)).$

Conclusion: $\forall x (\neg R(x) \rightarrow P(x))$ (Domain for all quantifiers are the same.) **Solution:**

- a) 1. $p \rightarrow (\neg r \rightarrow \neg q)$ (Premise) 2. $p \rightarrow (r \lor \neg q)$ (Using $p \rightarrow q \equiv \neg p \lor q$ on 1) 3. $\neg p \lor (r \lor \neg q)$ (Using $p \rightarrow q \equiv \neg p \lor q$ on 2) 4. $\neg p \lor (\neg q \lor r)$ (Commutative law on 3) 5. $(\neg p \lor \neg q) \lor r$ (Associative law on 4) 6. $r \lor (\neg p \lor \neg q)$ (Commutative law on 5) 7. $\neg r$ (Premise) 8. $\neg p \lor \neg q$ (Disjunctive syllogism on 6 and 7) 9. $\neg (p \land q)$ (De Morgan's law on 8)
- b) 1. $p \rightarrow q$ (Premise)

2.
$$\neg p \lor q$$
 (Using $p \to q \equiv \neg p \lor q$ on 1)

- 3. $q \lor \neg p$ (Commutative law on 2)
- 4. $(q \lor r) \land (\neg (q \land r))$ (Premise)
- 5. $(q \lor r)$ (Simplification of 4)
- 6. $(q \lor \neg p) \land (q \lor r)$ (Conjunction of 3 and 5)
- 7. $q \lor (\neg p \land r)$ (Distributive law on 6)
- 8. $\neg q \rightarrow (\neg p \land r)$ (Using $p \rightarrow q \equiv \neg p \lor q$ on 7)
- c) 1. $p \land \neg s$ (Premise)
 - 2. *p* (Simplification of 1)
 - 3. $\neg s$ (Simplification of 1)
 - 4. $q \rightarrow (r \rightarrow s)$ (Premise)
 - 5. $q \rightarrow (\neg r \lor s)$ (Using $p \rightarrow q \equiv \neg p \lor q$ on 4)
 - 6. $\neg q \lor (\neg r \lor s)$ (Using $p \to q \equiv \neg p \lor q$ on 5)
 - 7. $(\neg q \lor \neg r) \lor s$ (Associative law on 6)
 - 8. $s \lor (\neg q \lor \neg r)$ (Commutative law on 6)
 - 9. $(\neg q \lor \neg r)$ (Disjunctive syllogism on 3 and 8)
 - 10. $p \land (\neg q \lor \neg r)$ (Conjunction of 2 and 9)
 - 11. $(p \land \neg q) \lor (p \land \neg r)$ (Distributive law on 10)

12.
$$(\neg(\neg(p \land \neg q))) \lor (p \land \neg r)$$
 (Double negation on 11)

- 13. $(\neg (\neg p \lor q)) \lor (p \land \neg r)$ (De Morgan's on 12)
- 14. $(\neg (p \rightarrow q)) \lor (p \land \neg r)$ (Using $p \rightarrow q \equiv \neg p \lor q$ on 13)
- 15. $(\neg (p \rightarrow q) \lor p) \land (\neg (p \rightarrow q) \lor \neg r)$ (Distributive law on 14)
- 16. $\neg (p \rightarrow q) \lor \neg r$ (Simplification of 15)
- 17. $(p \to q) \to \neg r$ (Using $p \to q \equiv \neg p \lor q$ on 16)

d) 1. $\forall x (P(x) \lor Q(x))$ (premise) 2. $P(c) \lor Q(c)$ for an arbitrary c in the domain (Universal instantiation of 1) 3. $\forall x (\neg Q(x) \lor S(x))$ (premise) 4. $\neg Q(c) \lor S(c)$ for an arbitrary *c* in the domain (Universal instantiation of 3) 5. $\forall x(R(x) \rightarrow \neg S(x))$ (premise) 6. $R(c) \rightarrow \neg S(c)$ for an arbitrary c in the domain (Universal instantiation of 5) 7. $\exists x \neg P(x)$ (premise) 8. $\neg P(c)$ for some c in the domain (Existential instantiation of 7) 9. $\neg R(c) \lor \neg S(c)$ for an arbitrary c in the domain (Using $p \rightarrow q \equiv \neg p \lor q$ on 6) 10. $\neg Q(c) \lor \neg R(c)$ for an arbitrary *c* in the domain (Resolution on 4 and 9) 11. $\neg R(c) \lor \neg Q(c)$ for an arbitrary c in the domain (Commutative law on 10) 12. $P(c) \lor \neg R(c)$ for an arbitrary c in the domain (Resolution on 2 and 11) 13. $\neg R(c)$ for some c in the domain (Disjunctive Syllogism on 8 and 12) 14. $\exists x \neg R(x)$ (Existential Generalisation of 13) e) 1. $\forall x (P(x) \lor Q(x))$ (Premise) 2. $P(c) \lor Q(c)$ for an arbitrary *c* in the domain (Universal instantiation of 1) 3. $\forall x((\neg P(x) \land Q(x)) \rightarrow R(x))$ (Premise) 4. $(\neg P(c) \land Q(c)) \rightarrow R(c)$ for an arbitrary *c* in the domain (Universal instant. of 3) 5. $\neg(\neg P(c) \land Q(c)) \lor R(c)$ for an arbitrary *c* in ... (Using $p \rightarrow q \equiv \neg p \lor q$ on 4) 6. $(P(c) \lor \neg Q(c)) \lor R(c)$ for an arbitrary c in the domain (De Morgan's law on 5) 7. $(\neg Q(c) \lor P(c)) \lor R(c)$ for an arbitrary c in the domain (Commutative law on 6) 8. $\neg Q(c) \lor (P(c) \lor R(c))$ for an arbitrary *c* in the domain (Associative law on 7) 9. $Q(c) \lor P(c)$ for an arbitrary c in the domain (Commutative law on 2) 10. $P(c) \lor (P(c) \lor R(c))$ for an arbitrary *c* in the domain (Resolution on 8 and 9) 11. $(P(c) \lor P(c)) \lor R(c)$ for an arbitrary c in the domain (Associative law on 10) 12. $P(c) \lor R(c)$ for an arbitrary *c* in the domain (Idempotent law on 11) 13. $R(c) \lor P(c)$ for an arbitrary c in the domain (Commutative law on 12) 14. $\neg R(c) \rightarrow P(c)$ for an arbitrary c in the domain (Using $p \rightarrow q \equiv \neg p \lor q$ on 13) 15. $\forall x (\neg R(x) \rightarrow P(x))$ (Universal generalization of 14)

5. Find the flaw in the below proof that shows that if $\exists x P(x) \land \exists x Q(x)$ is true, then $\exists x (P(x) \land Q(x))$ is true.

1. $\exists x P(x) \land \exists x Q(x)$	Premise
2. $\exists x P(x)$	Simplification of 1
3. $\exists x Q(x)$	Simplification of 1
4. <i>P</i> (<i>c</i>)	Existential instantiation from 2
5. $Q(c)$	Existential instantiation from 3

6. $P(c) \land Q(c)$ Conjunction from 4 and 5 7. $\exists x (P(x) \land Q(x))$ Existential Generalization **Solution:** We cannot infer $\exists x (P(x) \land Q(x))$ from $\exists x P(x) \land \exists x Q(x)$. Consider the domain as set of integers and P(x) = x is odd and Q(x) = x is even. Then, $\exists x P(x) \land \exists x Q(x)$ will be true, but $\exists x (P(x) \land Q(x))$ will be false.

Flaw: In 4, it should be "P(c) for some element c in the domain" and in 5, it should be "Q(c) for some element c in the domain". Now, from 4 and 5, we cannot infer $P(c) \land Q(c)$ as cs in 4 and 5 may not be the same. It is advisable to use different notation when multiple statements of the type $\exists x P(x)$ are present to avoid confusion. For instance, we could have written "Q(c') for some element c' in the domain".